On computing the general Narumi-Katayama index of some graphs
author
Abstract:
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-vector $x$ and it is denoted by $GNK(G, x)$ for a graph $G$. Then, we obtain some bounds for $GNK$ index of a graph $G$ by terms of clique number and independent number of $G$. Also we compute the $GNK$ index of splice and link of two graphs. Finally, we use from our results to compute the $GNK$ index of a class of dendrimers.
similar resources
On computing the general Narumi-Katayama index of some graphs
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph with vertex set V = {v1, . . . , vn} and d(v) be the degree of vertex v in the graph G. The Narumi-Katayama index is defined as NK(G) = ∏ v∈V d(v). In this paper, the Narumi-Katayama index is generalized using a n-vector x and it is denoted by GNK(G, x) ...
full textNarumi-katayama Index of Some Derived Graphs
The Narumi-Katayama index of a graph G is equal to the product of degrees of all the vertices of G. In this paper, we examine the NarumiKatayama index of some derived graphs such as a Mycielski graph, subdivision graphs, double graph, extended double cover graph, thorn graph, subdivision vertex join and edge join graphs.
full texton computing the general narumi-katayama index of some graphs
the narumi-katayama index was the first topological index defined by the product of some graph theoretical quantities. let $g$ be a simple graph with vertex set $v = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $g$. the narumi-katayama index is defined as $nk(g) = prod_{vin v}d(v)$. in this paper, the narumi-katayama index is generalized using a $n$-ve...
full textNarumi-Katayama Index of Total Transformation Graphs
The Narumi-Katayama index of a graph was introduced in 1984 for representing the carbon skeleton of a saturated hydrocarbons and is defined as the product of degrees of all the vertices of the graph. In this paper, we examine the Narumi-Katayama index of different total transformation graphs. MSC (2010): Primary: 05C35; Secondary: 05C07, 05C40
full textModified Narumi – Katayama Index
The Narumi–Katayama index of a graph G is equal to the product of the degrees of the vertices of G. In this paper we consider a new version of the Narumi– Katayama index in which each vertex degree d is multiplied d times. We characterize the graphs extremal w.r.t. this new topological index.
full textOn The Narumi-Katayama Index of Splice and Link of graphs
The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G. In this paper we compute this index for Splice and Link of two graphs. At least with use of Link of two graphs, we compute this index for a class of dendrimers. With this method, the NK index for other class of dendrimers can be computed similarly.
full textMy Resources
Journal title
volume 7 issue 1
pages 45- 50
publication date 2015-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023